Hydroponics

Hydroponics is a method of growing plants using mineral nutrient solutions, in water, without soil. Terrestrial plants may be grown with their roots in the mineral nutrient solution only or in an inert medium, such as perlite, gravel, mineral wool, or coconut husk.

Researchers discovered in the 18th century that plants absorb essential mineral nutrients as inorganic ions in water. In natural conditions, soil acts as a mineral nutrient reservoir but the soil itself is not essential to plant growth. When the mineral nutrients in the soil dissolve in water, plant roots are able to absorb them. When the required mineral nutrients are introduced into a plant’s water supply artificially, soil is no longer required for the plant to thrive. Almost any terrestrial plant will grow with hydroponics. Hydroponics is also a standard technique in biology research and teaching.

Advantages

Some of the reasons why hydroponics is being adapted around the world for food production are the following:

  • No soil is needed
  • The water stays in the system and can be reused - thus, lower water costs
  • It is possible to control the nutrition levels in their entirety - thus, lower nutrition costs
  • No nutrition pollution is released into the environment because of the controlled system
  • Stable and high yields
  • Pests and diseases are easier to get rid of than in soil because of the container’s mobility

Today, hydroponics is an established branch of agronomy. Progress has been rapid, and results obtained in various countries have proved it to be thoroughly practical and to have very definite advantages over conventional methods of horticulture. The two chief merits of the soil-less cultivation of plants are, first, hydroponics produces much higher crop yields, and, second, hydroponics can be used in places where in-ground agriculture or gardening are not possible.

Disadvantages

Without soil as a buffer, any failure to the hydroponic system leads to rapid plant death. Other disadvantages include pathogen attacks such as damp-off due to Verticillium wilt caused by the high moisture levels associated with hydroponics and over watering of soil based plants. Also, many hydroponic plants require different fertilizers and containment systems.

Nutrient solutions

Plant nutrients used in hydroponics are dissolved in the water and are mostly in inorganic and ionic form. Primary among the dissolved cations (positively charged ions) are calcium, magnesium, and potassium; the major nutrient anions in nutrient solutions are nitrate, sulfate, and dihydrogen phosphate.

Numerous ‘recipes’ for hydroponic solutions are available. Many use different combinations of chemicals to reach similar total final compositions. Commonly used chemicals for the macronutrients include potassium nitrate, calcium nitrate, potassium phosphate, and magnesium sulfate. Various micronutrients are typically added to hydroponic solutions to supply essential elements; among them are Fe (iron), Mn (manganese), Cu (copper), Zn (zinc), B (boron), Cl (chlorine), and Ni (nickel). Chelating agents are sometimes used to keep Fe soluble. Many variations of the nutrient solutions used by Arnon and Hoagland (see above) have been styled ‘modified Hoagland solutions’ and are widely used. Variation of different mixes throughout the plant life-cycle, further optimizes its nutritional value. Plants will change the composition of the nutrient solutions upon contact by depleting specific nutrients more rapidly than others, removing water from the solution, and altering the pH by excretion of either acidity or alkalinity. Care is required not to allow salt concentrations to become too high, nutrients to become too depleted, or pH to wander far from the desired value.

Although pre-mixed concentrated nutrient solutions are generally purchased from commercial nutrient manufacturers by hydroponic hobbyists and small commercial growers several tools exists to help anyone prepare their own solutions without extensive knowledge about chemistry. The free and open source tools HydroBuddy and HydroCal have been created by professional chemists to help any hydroponics grower prepare their own nutrient solutions. The first program is available for Windows, Mac and Linux while the second one can be used through a simple java interface. Both programs allow for basic nutrient solution preparation although HydroBuddy provides added functionality to use and save custom substances, save formulations and predict electrical conductivity values.

The well-oxygenated and enlightened environment promotes the development of algae. It is therefore necessary to wrap the tank with black film obscuring all light.

Commercial

Some commercial installations use no pesticides or herbicides, preferring integrated pest management techniques. There is often a price premium willingly paid by consumers for produce that is labelled “organic”. Some states in the USA require soil as an essential to obtain organic certification. There are also overlapping and somewhat contradictory rules established by the US Federal Government, so some food grown with hydroponics can be certified organic.

Hydroponics also saves water; it uses as little as 1?20 the amount as a regular farm to produce the same amount of food. The water table can be impacted by the water use and run-off of chemicals from farms, but hydroponics may minimize impact as well as having the advantage that water use and water returns are easier to measure. This can save the farmer money by allowing reduced water use and the ability to measure consequences to the land around a farm.

To increase plant growth, lighting systems such as metal halide for growing stage only or high-pressure sodium for growing/flowering/blooming stage are used to lengthen the day or to supplement natural sunshine if it is scarce. Metal halide emits more light in the blue spectrum, making it ideal for plant growth but is harmful to unprotected skin and can cause skin cancer. High-pressure sodium emits more light in the red spectrum, meaning that it is best suited for supplementing natural sunshine and can be used throughout the growing cycle. However, these lighting systems require large amounts of electricity to operate, making efficiency and safety very critical.

The environment in a hydroponics greenhouse is tightly controlled for maximum efficiency, and this new mindset is called soil-less/controlled-environment agriculture (CEA). With this growers can make ultra-premium foods anywhere in the world, regardless of temperature and growing seasons. Growers monitor the temperature, humidity, and pH level constantly.

Hydroponics have been used to enhance vegetables to provide more nutritional value. A hydroponic farmer in Virginia has developed a calcium and potassium enriched head of lettuce, scheduled to be widely available in April 2007. Grocers in test markets have said that the lettuce sells “very well”, and the farmers claim that their hydroponic lettuce uses 90% less water than traditional soil farming.

Advancements

With pest problems reduced, and nutrients constantly fed to the roots, productivity in hydroponics is high, although plant growth can be limited by the low levels of carbon dioxide in the atmosphere, or limited light exposure. To increase yield further, some sealed greenhouses inject carbon dioxide into their environment to help growth (CO2 enrichment), add lights to lengthen the day, or control vegetative growth, etc.

Charity Use

A number of hydroponic experts are now promoting hydroponic solutions as cheap ways of producing food in areas with bad soil. As hydroponic system use less water to grow than traditional farming it is also a more effecient use of resources..

.