Coarse fescue (Festuca arundinacea)

Introduction:

Coarse fescue (Festuca arundinacea)

Festuca arundinacea (syn., Lolium arundinaceum Darbyshire; Schedonorus phoenix (Scop.) Holub) is a species of fescue commonly known as Tall fescue. It is a cool-season perennial C3 species of bunchgrass native to Europe. It is an important forage grass throughout Europe, and many cultivars have been used in agriculture. It is also an ornamental grass in gardens, and a phytoremediation plant.

The predominant cultivar found in British pastures is S170, an endophyte-free variety. In its native European environment, tall fescue is found in damp grasslands, river banks, and in coastal seashore locations. Its distribution is a factor of climatic, edaphic, or other environmental attributes.

Description:

Tall fescue is a long-lived perennial bunchgrass species. Photosynthesis occurs throughout the leaves, which form bunches and are thick and wide with prominent veins running parallel the entire length of the blade. The blades have a “toothed” edge which can be felt if fingers are run down the edge of the leaf blade. The underside of the leaf may be shiny. Emerging leaves are rolled in the bud with no prominent ligule. Note that most grasses are folded not rolled, which make this a key idenification feature on tall fescue. The auricles are usually blunt but occasionally may be more clawlike. The culm is round in cross-section. Typically, this species of grass has a long growing season and ranges between 2 to 4 feet (1.2 m) tall in seedhead stage.

Tall fescue spreads through tillering and seed transmission — not by stolon - above ground runnerss or rhizome - below ground runnerss, which are common in many grass species. However, tall fescue may have numerous sterile shoots that extend the width of each bunch. There are approximately 227,000 seeds per pound.

Typically found across the mid-atlantic and southeast US, tall fescue performs best in soils with pH values between 5.5 to 7. Growth may occur year-round if conditions are adequate, but typically growth ceases when soil temperature falls below 40 °F (4 °C).

Coarse fescue (Festuca arundinacea) Distribution in North America shown in green.

Effects:

Broodmares and foals:

Horses are especially prone to reproductive problems associated with tall fescue, often resulting in death of the foal, mare, or both. Horses which are pregnant may be strongly affected by alkaloids produced by the tall fescue symbiont. Broodmares that forage on infected fescue may have prolonged gestation, foaling difficulty, thickened placenta, or impaired lactation. In addition, the foals may be born weakened or dead.To moderate toxicosis, it is recommended that pregnant mares should be taken off infected tall fescue pasture for 60–90 days before foaling as late gestation problems are most common.

Cattle:

Fescue toxicity in cattle appears as roughening of the coat in the summer and intolerance to heat. Cattle that graze on tall fescue are more likely to stay in the shade or wade in the water in hot weather. In the winter, a condition known as “fescue foot” might afflict cattle. This results from vasoconstriction of the blood vessels especially in the extremities, and causes a gangrenous condition. Untreated, the hoof might slough off. Additionally, cattle may experience decreased weight gains and poor milk production when heavily grazing infected tall fescue pasture. To deter toxicosis cattle should be given alternative

Close up of the Coarse fescue (Festuca arundinacea) Weed.

feed to dilute their infected tall fescue intake.

Pasture:

Carbon cycling in terrestrial ecosystems is a major focus of research. Terrestrial carbon sequestration is the process of removing carbon dioxide from the atmosphere via photosynthesis and storing this carbon in either plant or soil carbon pools. Increases in soil organic carbon help aggregate the soil, increase infiltration, reduce erosion, increase soil fertility, and act as a long lived pools of soil carbon. Many studies have suggested that long term endophyte-infected tall fescue plots increase soil carbon storage in the soil by limiting the microbial and macrofaunal activity to break down endophyte infected organic matter input and by increasing inputs of carbon via plant production. While the long term studies tend to show an increase in carbon storage, the short term studies do not. However, short term studies have shown that the endophyte association results in higher above- and belowground plant biomass production compared to uninfected plants, as well as a decrease in certain microbial communities. Site-specific characteristics, such as management and climate, need to be further understood to realize the ecological role and potential benefits of tall fescue and the endophyte association as it relates to carbon sequestration.